TopicRank en domaines de spécialité : participation du LINA à DEFT 2016

Adrien Bougouin Florian Boudin Beatrice Daille

Laboratoire LINA, Université de Nantes

DEFT 2016, Paris, France

Introduction

- ▶ Participation du LINA à la campagne DEFT 2016
 - Système fondé sur TopicRank, une méthode d'extraction de termes-clés à base de graphe
- Originalités de la méthode proposée :
 - Les termes-clés de l'ensemble d'entraînement sont exploités pour construire une représentation du domaine
 - Les termes-clés du domaine et ceux extraits du document sont ordonnés par renforcement mutuel

Plan

Introduction

Méthode proposée

Résultats

Méthode proposée I

Description de TopicRank en 5 étapes

1. **Sélection des mots-clés candidats** : plus longues séquences de noms et d'adjectifs en tant que mots-clés candidats :

$$mots_cles_candidat = (NOM|ADJ) + \tag{1}$$

2. Groupement des candidats similaires en sujets : deux candidats c_i et c_j sont jugés similaires lorsqu'ils partagent au moins un quart de leurs mots racinisés :

$$sim(c_i, c_j) = \frac{|Porter(c_i) \cap Porter(c_j)|}{|Porter(c_i) \cup Porter(c_j)|}$$
(2)

$$\forall c_i, c_j \in CANDIDATS, c_j \in \operatorname{sujet}(c_i) \Rightarrow \operatorname{sim}(c_i, c_j) \ge \frac{1}{4}$$
 (3)

Le groupement est réalisé avec un algorithme de groupement hiérarchique agglomératif.

Méthode proposée II

Description de TopicRank en 5 étapes

3. Construction du graphe : le document est représenté par un graphe complet $G=(N,A\subseteq N\times N)$ où les nœuds N sont les sujets. Chaque sujet $n\in N$ est connecté aux autres par une arête pondérée $a\in A$ selon la force du lien sémantique entre les sujets :

$$poids(n_i, n_j) = \sum_{c_i \in n_i} \sum_{c_j \in n_j} distance(c_i, c_j)$$
 (4)

$$\operatorname{distance}(c_i, c_j) = \sum_{p_i \in \operatorname{positions}(c_i)} \sum_{p_j \in \operatorname{positions}(c_j)} \frac{1}{|p_i - p_j|} \tag{5}$$

Plus faible est la distance entre les mots-clés candidats de deux sujets dans le document, plus élevé est le poids de l'arête entre les deux sujets.

Méthode proposée III

Description de TopicRank en 5 étapes

4. Ordonnancement des sujets : les sujets sont ordonnés par importance selon le principe de recommandation. Plus un sujet est fortement connecté à un grand nombre de sujets, plus il gagne d'importance, et plus les sujets avec lesquels il est fortement connecté sont importants, plus l'importance qu'il gagne est forte :

$$\operatorname{importance}(n_i) = (1 - \lambda) + \lambda \times \sum_{n_j \in A(n_i)} \frac{\operatorname{poids}(n_i, n_j) \times \operatorname{importance}(n_j)}{\sum_{n_k \in A(n_j)} \operatorname{poids}(n_j, n_k)} \tag{6}$$

Où λ est un facteur de lissage fixé à 0,85.

5. Extraction des mots-clés : un unique terme-clé (celui qui apparaît en premier dans le document) est extrait pour chacun des k plus importants sujets.

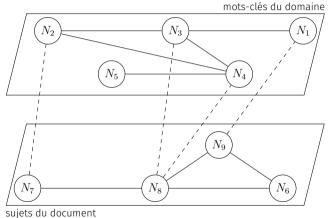
Méthode proposée I

Modifications apportées à TopicRank

- La construction du graphe étend le graphe de sujet en l'unifiant à un graphe des mots-clés de référence du domaine
- L'ordonnancement est conjoint entre les sujets du document et les mots-clés du domaine
- La sélection des mots-clés ajoute la possibilité de puiser dans le graphe du domaine

Méthode proposée II

Modifications apportées à TopicRank



Méthode proposée III

Modifications apportées à TopicRank

- Deux sujets ou deux mots-clés du domaine sont connectés lorsqu'ils apparaissent dans le même contexte et leur arête est pondérée par le nombre de fois que cela se produit
 - Pour les sujets, le contexte est une phrase du document
 - Pour les mots-clés du domaine, le contexte est l'ensemble des mots-clés du domaine d'un document d'apprentissage

Méthode proposée

Ordonnancement conjoint des sujets et des mots-clés du domaine

importance
$$(s_i) = (1 - \lambda_s) R_{\text{externe}}(s_i) + \lambda_s R_{\text{interne}}(s_i)$$
 (7)

importance
$$(m_i) = (1 - \lambda_m) R_{\text{externe}}(m_i) + \lambda_m R_{\text{interne}}(m_i)$$
 (8)

$$R_{interne}(n_i) = \sum_{n_j \in A_{interne}(n_i)} \frac{\mathsf{poids}(n_i, n_j) \mathsf{importance}(n_j)}{\sum_{n_k \in A_{interne}(n_i)} \mathsf{poids}(n_j, n_k)} \tag{9}$$

$$R_{\text{externe}}(n_i) = \sum_{n_j \in A_{\text{externe}}(n_i)} \frac{\text{importance}(n_j)}{|A_{\text{externe}}(n_j)|} \tag{10}$$

Où λ_s et λ_m sont deux facteurs de lissage définis empiriquement pour l'ordonnancement par importance des sujets et des mots-clés du domaine, respectivement.

Plan

Introduction

Méthode proposée

Résultats

Paramètres expérimentaux

- ► Trois runs/variantes de notre méthode
 - M1 méthode proposée
 - V1.1 Extraction seule (mots-clés extraits du document)
 - V1.2 Assignement seul (mots-clés extraits du domaine)
- ▶ Les trois méthodes extraient les 10 meilleurs mots-clés

Résultats I

	Archéologie			Chimie		
Méthode	Précision	Rappel	F-mesure	Précision	Rappel	F-mesure
M1	49,86	31,16	37,28	20,87	17,45	18,11
V1.1	43,63	26,63	32,17	15,77	13,10	13,60
V1.2	53,77	33,46	40,11	21,15	17,54	18,28

	Linguistique			Sciences de l'information			
Méthode	Précision	Rappel	F-mesure	Précision	Rappel	F-mesure	
M1	22,23	24,87	23,24	20,61	20,65	20,21	
V1.1	13,77	15,56	14,47	15,67	15,87	15,39	
V1.2	23,16	25,85	24,19	21,93	21,83	21,45	

Résultats II

	Archéologie		Chimie		Linguistique		Sciences de l'information	
Rang	Équipe	F-mesure	Équipe	F-mesure	Équipe	F-mesure	Équipe	F-mesure
1	EXENSA	45,59	EXENSA	21,46	EBSIUM	31,75	EBSIUM	28,98,
2	LIMSI	43,26	EBSIUM	21,07	EXENSA	26,30	EXENSA	23,86
3	LINA	40,11	LINA	18,28	LINA	24,19	LINA	21,45
4	EBSIUM	34,96	LIPN	15,31	LIPN	19,07	LIPN	15,34
5	LIPN	30,75	LIMSI	15,29	LIMSI	15,63	LIMSI	12,49

Plan

Introduction

Méthode proposée

Résultats

- Méthode fondé sur TopicRank et ajoutant la possibilité d'assigner des mots-clés du domaine
- ▶ Utilisation des mots-clés de l'ensemble d'entraînement en lieu et place des thésaurus
- Résultats intéressants, avec la variante effectuant l'assignement seul plus performante